
CFD-based Computations of Flexible Helicopter Blades for Stability Analysis 

 

Guru P. Guruswamy * 

NASA Advanced Supercomputing Division 

Ames Research Center, Moffett Field, CA 

 

Abstract 

As a collaborative effort among government aerospace research laboratories, an  

advanced version of a widely used computational fluid dynamics code, 

OVERFLOW2.1z, was recently released.  This latest version includes additions to model 

multiple flexible, rotating blades.  This paper describes how the OVERFLOW code is 

applied to improve the accuracy of airload computations from the linear lifting line 

theory that uses displacements from the beam model.  In the case used, data transfers 

required at every revolution are managed through a Unix-based script that runs jobs on 

large supercluster computers.  Results are demonstrated for the 4-bladed UH-60A 

helicopter, deviations of computed data from flight data are evaluated, and Fourier 

analysis post-processings suitable for aeroelastic stability computations are performed.  

Use of airload data for flutter speed computations needed for stability analysis is 

demonstrated for a typical section of a blade.  

 

Introduction 

Accurate aeroelastic computations of helicopter rotor blades involve use of high-fidelity 

fluids and structures models.  The flows are often dominated by shocks waves, blade-

vortex interactions and flow separation, and need the use of 3-D Navier-Stokes equations 

[1]. The primary aeroelastic characteristics of a helicopter rotor blade without accounting 

for multi-body dynamics can be modeled using beam modes [2].  

 

Several 3-D Navier-Stokes based computational fluid dynamics (CFD) codes are in use 

today.  OVERFLOW, one of the popular CFD codes for rotorcraft applications, has been 

extensively applied for rigid configurations to-date [3,4]. Of recent OVERFLOW is 

applied for aeroelasticity by coupling with computational structural dynamics (CSD) 

methods [2]. FUN3D [5] is another advanced CFD code based on unstructured grid 

methodology for rotorcraft applications. OVERFLOW uses overset structured grids to 

model the flow field. Efforts are in progress to add advanced aeroelastic capability to 

OVERFLOW. Recently, a beam finite-element-based structures [6] was added for 

isolated blades with a single grid and was demonstrated for cases that do not need 

trimming. In collaboration with U.S Army engineers [7], NASA added the multi-block-

dynamic-deforming grid capability to the latest version of the code, OVERFLOW 2.1z, 

to compute accurate airloads using the prescribed aeroelastic motions of multiple blades 

for steady flight [8]. In this effort, OVERFLOW 2.1z solutions are applied to correct the 

airloads computed from linear aerodynamics based comprehensive analysis (CA) code 

CAMRAD [9] to improve the accuracy of aeroelastic responses.  CAMRAD, which is 

similar to UMARC [10] and RCAS [11], computes the airloads using lifting-line theory 

[12], utilizing the displacements from the beam model of the rotor blade.  
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This paper describes computations made using OVERFLOW 2.1z. The prescribed 

structural deformation data for each revolution is computed using CAMRAD. A Unix 

script is employed to facilitate the data transfer between OVERFLOW and CAMRAD. 

Results are demonstrated for a UH-60A helicopter [13] blade.  The quality of the results 

is assessed by computing deviations from measured flight-test data. Fourier analysis is 

employed to compare data with flight tests. Use of computed data for computing flutter 

boundary is demonstrated for a typical section of a blade.    

 

Approach 

Accurate computations of airloads for the UH-60A rotorcraft in forward flight require 

trim solutions [14]. The current state-of-the art to compute trim is based on lifting-line 

solutions tuned with measured thrust forces [7]. Trim solutions exclusively using CFD 

loads have yet to be developed.  In this effort, trim parameters are computed using 

CAMRAD, which solves the harmonic Hamiltonian equations to give solutions only at 

the end of each revolution. On the other hand, OVERFLOW is based on a time marching 

scheme. In order to utilize the trim solutions from CAMRAD, airloads from 

OVERFLOW are computed at the end of every revolution and applied to correct the 

airloads of CAMRAD, which in turn are used for computing the aeroelastic 

displacements. The structural displacements are computed using the beam finite-element 

solver in CAMRAD.  This approach, known as loose coupling (LC), is described step-by-

step in the next paragraph.   

 

First, a solution in the form of blade displacement data (known as the motion file for 

OVERFLOW) is obtained from CAMRAD using flight parameters. The linear lifting- 

line theory, along with free wake model, is used to compute this initial estimate of motion 

data from the beam model in CAMRAD.  Assuming steady forward flight, this full-

revolution motion data, defined to be the same for all blades, is used as a prescribed 

motion for OVERFLOW.  Using the required time step, computations are made for one 

revolution and aerodynamic forces are computed. These CFD-based aerodynamic loads 

are used to correct aerodynamic forces in CAMRAD, and a new motion data file with 

superimposed trim corrections is computed. The new motion data file is used as a 

prescribed motion in OVERFLOW to compute corrected aerodynamic forces.  The 

CAMRAD/ OVERFLOW computations and data corrections are repeated until the results 

are converged. Convergence of results is established first by increasing the number of 

OVERFLOW/CAMRAD iterations and then by increasing the number of time steps per 

revolution in OVERFLOW.    

 

Figure 1 shows a flow diagram of the OVERFLOW/CAMRAD data exchange process.  

A Unix shell script [15] is used to facilitate the data exchanges between OVERFLOW 

and CAMRAD. OVERFLOW is run on Pleiades supercomputer at the NASA advanced 

supercomputing center facility at Ames Research Center [16] using portable batch system 

(PBS) [17] with Message Passing Interface (MPI) [18]. CAMRAD is run on a front end 

Linux node.  



 

Fig 1. OVERFLOW/CAMRAD data exchange process. 

 

Results 

 

Validation for UH-60A Helicopter Blade System 

 

The 4-bladed UH-60A helicopter, with its extensive set of flight data [13], is selected for 

demonstrating the latest version (2.1z) of OVERFLOW to correct the airloads and, in 

turn, aeroelastic displacements computed from CAMRAD.  Only the rotor blades are 

modeled.  Each blade has a radius of 322 inches and a chord of 20.76 inches with a swept 

tip at 92.9% radial station.  A 5-million-point overset grid, with 1.9 million near-blade 

grid points, is selected.  All four blades are modeled using 12 overset grid blocks with 

three blocks for each blade.  The three blocks associated with each blade include cap 

grids at the root and tip sections, as well as a blade grid. The blade surface is represented 

by a total of 7462 grid points.  A portion of the blade geometry and grid near the tip are 

shown in Figure 2.  The high-speed test case C8534 [13], which corresponds to a free- 

stream Mach number of 0.236 with an advance ratio of 0.37 and a tip Mach number of 

0.642 while blades are rotating at a speed of 4.3 Hz, is selected for demonstration.  

  

All computations are made time accurately by using a constant time step in 

OVERFLOW.  First, computations are started with 1440 steps per revolution and 

CFD/CSD (computational structural dynamics) data exchanges are repeated until the 

results are converged.  Convergence is monitored by tracking the normal force at 86.5% 

radial station, when the first blade is at 120 degrees azimuth. It required about 25 CFD 

corrections for convergence. This calculation is repeated by increasing the number of 

steps per revolution (NSPR) in increments of 1440. Figure 3 shows convergence plots for 

increasing the NSPR. Results converge at about NSPR = 7200. This is verified by using  

NSRP = 8640, which produced a result nearly identical with the NSPR = 7200 result. 

 



 

 
 

Fig. 2 A portion of 4-bladed UH-60 rotor grid near blade tip. 

 

.  

Fig. 3. Convergence of normal force at 86.5% radial station for the first blade. 

 

Plots of computed and flight sectional normal force Cn and pitching moment Cm at  

86.5% radial station are shown in figures 4 and 5, respectively. The comparisons are 

favorable. 

 



 

Fig. 4 Comparison of normal force with  Fig. 5 Comparison of pitching moment 

flight data at a radial station of 86.5%  with flight data at radial station of 86.5%. 

span for the C8534 case of UH-60A rotor. span for the C8534 case of UH-60A rotor. 

 

Based on the procedure discussed in Ref. 19, deviations of computed Cn and Cm from 

flight data [13] are calculated.  First, a measured value and corresponding azimuth is 

selected from flight data from figures 4 and 5. The computed force value corresponding 

to the selected flight azimuth is extracted and its deviation from flight force value is 

calculated.  The plots of these deviations are shown in figures 6 and 7 for Cn and Cm, 

respectively.  All computed values are within 10% of the measured data except for four 

values that go beyond 10% for Cm.  The average deviations are 3.51% and 3.81% for Cn 

and Cm, respectively.  These values are less than the corresponding average deviations, 

4.1% and 4.7%, reported in Ref. 19 based on a survey of results taken from the 

Literature.  

Fig 6. Deviation of computed normal  Fig. 7 Deviation of computed pitching 

force coefficient for the C8534 flight        moment coefficient for the C8534 flight  

case of UH-60A rotor system   case of UH-60A rotor system. 

 

 

 

 



 

Fourier Transformations for Aeroelastic Stability Analysis 

 

The aerodynamic forces computed using OVERFLOW need to be converted to Fourier 

quantities for use in aeroelastic stability analysis [20].  The deviations shown in figures 6 

and 7 provide information only about the magnitude of the airloads. For aeroelastic  

stability analysis, both magnitude and phase angles play an important role. Fourier 

analysis [21] also determines the deviations of phase angles from measured data. 

Fig. 8 Comparison of normal force     Fig. 9 Comparison of normal force  

magnitudes at a radial station of    phase angles at a radial station of 

86.5%  span for the C8534 case    86.5% span for the C8534 case 

of UH-60A rotor system.    UH-60A rotor system. 

 

 

Fourier transformations [21] are applied to the airloads computed from OVERFLOW. 

Magnitudes and phase angles with respect to the azimuth of the first blade are computed 

for 20 harmonics.  Figure 8 shows the comparison between computed and flight normal 

force magnitude at r/R = 0.865. The values of magnitude become small after the 9th 

harmonic. 

 

Comparison between computed and measured data is good for the magnitude of all 20 

harmonics.  Figure 9 shows corresponding plots for phase angles.  The differences 

between computed and measured phase angles are significant after the 7
th

 harmonic.  

These differences can be attributed to lack of time-accurate couplings between the 

OVERFLOW and CAMRAD computations, as well as smaller magnitude of the loads.  

Figure 10 shows the corresponding comparison of phase angle scaled by the ratio of 

current magnitude to the magnitude of the first harmonic. This plot shows a good 

comparison for all harmonics.  
 
 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Comparison of scaled phase angles of normal force at a radial station of 86.5% 

 span for the C8534 case of UH-60A rotor system.     

 

Figure 11 shows a comparison between computed and flight pitching moment 

magnitudes at r/R = 0.865. The pitching moment magnitude becomes small for 

harmonics higher than about 6. Comparison between computed and measured data is 

good for all 20 harmonics, except for some discrepancies around the 5
th

 harmonic. 

 

Figure 12 shows the plot of computed and measured phase angles for the pitching 

moment. The differences between computed and measured phase angles are more 

significant after the 3
rd

 harmonic. This may be due to low amplitude and lack of time-

accuracy in the LC approach.  Figure 13 shows the phase angle, scaled by the ratio of the 

current magnitude to the magnitude of the first harmonic. The scaled values show good 

comparison for all harmonics. 

 

Fig. 11 Comparison of pitching moment       Fig. 12 Comparison of pitching moment  

magnitudes at a radial station of        phase angles at a radial station of 86.5% 

span for the C8534 case                    86.5% span for the C8534 case 

of UH-60A rotor system.        UH-60A rotor system. 

 

 

 

 
 

 



 
 

Fig. 13  Comparison of scaled phase angles of pitching moment at a radial station of 

86.5%  span for the C8534 case of UH-60A rotor system. 

 

From results shown in figures 10 and 13 for normal force and pitching moment of the 

C8534 case,  phase angles of higher harmonics may not have significant contribution on 

stability computations since the magnitudes are small.    

 

Demonstration for Computing Stability Boundary 
The data to compute flutter speeds is not available in the public domain for the UH-60A 

rotor. As a result, use of computed airloads for calculating flutter speeds is demonstrated 

for a rotor blade with NACA64A010 airfoil section, and an aspect ratio of 16.  

 

Computations are made for hover conditions. This isolated single blade is modeled using 

a grid of 150,000 points, adequate for Euler computations in OVERFLOW.  For rotor 

blades, the flutter characteristics are first assessed by computing the flutter speed of the 

2-D typical section at a 75% semi-span station [22].  Assuming chordwise rigidness, the 

2-D section involves 2 degrees of freedom (DOF), pitch and plunge. The chordwise 

deformation, which has a secondary effect [22] on flutter speed, is neglected. 

Computations are made for two rotating speeds such that the local Mach numbers at 75% 

span station are 0.40 and 0.60.  The reduced frequency (defined as kr  = 4 c/3 R, where 

 is the flutter frequency, c is chord length,  is rotating speed in radians per second and 

R is radius of blade) is varied. The rotating speeds corresponding to 0.40 and 0.60 Mach 

numbers are 33.3 and 50.0 radians per second, respectively.  Flutter computations are 

made using the eigenvalue approach implemented software, TWODOF, reported in Ref. 

23.  Assuming that the blade is rigid and allowed to twist and flap about the root, 

computations are made for kr = 0.05, 0.10, 0.15 and 0.20.  Flapping and twisting motions 

are prescribed.  

 

Computations are made forcing the blade to undergo flapping motion with a tip 

amplitude of 0.8 chord and a twisting motion with an 1.0 degree amplitude.  Three 

oscillations are required for convergence to a periodic motion at which point the Fourier 

coefficients are extracted.   Figure 14 plots the magnitude of the first harmonic of the lift 

coefficient, due to twisting motion for both 0.40 and 0.60 Mach numbers. Also shown are 



results based on the Kernel function linear theory [24].  Results compare better at M∞ = 

0.40 than at M∞  = 0.60. For M∞ = 0.60, differences are more pronounced toward the 

lower frequencies.  It is noted that sectional lifts predicted by both the Euler and thelinear 

theory computations are higher than 6.28, a value based on the quasi-steady (kr = 0.0) 

linear theory [25]. 

 (a) Magnitude      (b) Phase angle 

 

Fig. 14. Magnitude (a) and phase angles (b) of sectional lift coefficients for typical 

section of NACA64A010 blade in twist motion. 

 

The phase angles of sectional lift forces, with respect to pitching motion computed using 

the Euler and linear theory equations, are shown in Fig. 15 for M∞ = 0.40 and 0.60. Euler 

and linear results are closer to each other for M∞  = 0.40 than for M∞ = 0.60.  For M∞  = 

0.60, the differences in phase angles increase as kr increases. 

 

Magnitude and phase angles of moments are extracted similarly to results shown in    

Figs. 14 (a) and (b), respectively.  Based on the magnitude and phase angles of the first 

harmonic, flutter computations are made using TWODOF. Assuming that the ratio of 

flapping frequency to torsion frequency is 0.20 and a mass center at mid-chord, then the 

non-dimensional flutter speed Uf = (3 R)/(2c α), where α is the torsional frequency in 

radians per second, is computed. Table I shows the summary of results for both Mach 

numbers. As expected, the Euler results are closer to the linear theory for M∞  = 0.40 than 

for M∞ = 0.60. 

 

Table I: Flutter Results 

                     LINEAR                     EULER                                          

M∞ Uf kf Uf kf 

0.40 7.12 0.091 7.20 0.110 

0.60 6.01 0.088 5.11 0.092 

 

 
 
 

 



This section demonstrates the use of newly developed CFD/CSD capabilities for 

computing the flutter speed. Following the procedures developed for fixed wings [26], 

the current approach can be extended to a full blade instead of the typical section 

considered here.  

 

 

Conclusions 

Computations have been made to demonstrate the use of advanced CFD codes for 

aeroelastic stability analysis of helicopter blades.  Loose coupling via Unix scripting 

works efficiently in transferring data between a high-fidelity CFD code and a low-fidelity 

CSD code.  Accounting for phase angles using Fourier analysis gives better insight into 

the results than does just considering amplitudes. The CFD corrections to the 

comprehensive code significantly improves the quality of results. Based on a typical 

section of a blade, it is shown that post-processed CFD data can be directly utilized in 

computing the flutter speeds needed for stability analysis.  Procedures developed and 

demonstrated here can be extended for computing the flutter boundary of a full blade.  
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